
Exact quantum motion of a particle trapped by oscillating fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 7757

(http://iopscience.iop.org/0305-4470/38/35/009)

Download details:

IP Address: 171.66.16.94

The article was downloaded on 03/06/2010 at 03:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/35
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 7757–7763 doi:10.1088/0305-4470/38/35/009

Exact quantum motion of a particle trapped by
oscillating fields

I A Pedrosa1, Alexandre Rosas1 and I Guedes2

1 Departamento de Fı́sica, CCEN, Universidade Federal da Paraı́ba, Caixa Postal 5008,
58051-970, João Pessoa, PB, Brazil
2 Departamento de Fı́sica, Universidade Federal do Ceará, Caixa Postal 6030, 60451-970,
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Abstract
The exact wavefunctions for a particle trapped by oscillating fields are
obtained in terms of Mathieu functions with the help of linear invariants
and the dynamical invariant method. In addition, we construct Gaussian
wave packet solutions and calculate the quantum fluctuations in the coordinate
and momentum as well as the quantum correlations between coordinate and
momentum.

PACS numbers: 03.65.Ca, 03.65.Ge, 32.80.Pj, 06.30.Ft

In the last few decades, the study of the quantum motion in a Paul trap has attracted a lot of
attention in the literature [1–15]. The Paul trap is an important device to confine charged and
neutral particles for the ultimate purpose of high resolution spectroscopy and its application
to the measurement of time. Since it was reviewed by Paul in his Nobel Prize lecture [2],
there has been an increasing interest in its application and mechanism. In particular, the
problem of deriving the explicitly time-dependent wavefunctions for a particle in a Paul
trap has been considered by some authors who have used different methods such as unitary
transformations [4], Lie algebra technique [9] and trial function method [1, 10] to achieve their
goals.

In this article, we take advantage of linear invariants and the dynamical invariant
operator methods, devised by Lewis and Riesenfeld [16], to obtain the exact time-dependent
Schrödinger wavefunctions for a particle trapped by oscillating fields. These wavefunctions
are written in terms of the solution of the Mathieu–Hill equation, the Mathieu functions
[17, 18]. In addition, we construct Gaussian wave packet solutions and calculate the quantum
fluctuations in coordinate and momentum and the quantum correlations between coordinate
and momentum.
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We model the particle in a Paul trap as a one-dimensional time-dependent harmonic
oscillator described by the Hamiltonian [1–5]

H(t) = p2

2m
+

1

2
mω2(t)q2, (1)

where ω2(t) = k cos2 �t,� being the driving frequency of the external field and k a measure of
its strength. To investigate the quantum motion of this system, we must solve the Schrödinger
equation

− h̄2

2m

∂2ψ(q, t)

∂q2
+

1

2
mω2(t)q2ψ(q, t) = ih̄

∂ψ(q, t)

∂t
. (2)

According to the invariant operator formulation [16], a solution of the Schrödinger equation (2)
is found if a nontrivial Hermitian operator I (t) exists and satisfies the equation

dI

dt
= 1

ih̄
[I,H ] +

∂I

∂t
= 0. (3)

The condition above allows one to write the solutions of the time-dependent Schrödinger
equation (2) as

ψλ(q, t) = eiµλ(t)φλ(q, t), (4)

where φλ(q, t) is an eigenfunction of I (t) with time-independent eigenvalue λ and µλ(t) is a
phase function that satisfies the equation

h̄
dµλ(t)

dt
= 〈φλ|

(
ih̄

∂

∂t
− H(t)

)
|φλ〉. (5)

Hence, in order to find such an operator, we consider a Hermitian linear invariant of the
form

I (t) = α(t)q + β(t)p + γ (t), (6)

where α(t), β(t) and γ (t) are time-dependent real functions to be determined. Thus, requiring
that I (t) obeys (3) we get

α̇(t) = mω2(t)β(t), (7)

β̇(t) = −α(t)

m
, (8)

γ̇ (t) = 0. (9)

From equations (7) and (8) we find that β(t) must obey the Mathieu–Hill equation

β̈(t) + ω2(t)β(t) = 0. (10)

As we will discuss later, the solutions of this equation are Mathieu functions. Once β(t) is
known, α(t) is directly obtained from equation (8). Therefore, the linear invariant can be
written as

I (t) = β(t)p − mβ̇(t)q, (11)

where without loss of generality we set γ (t) = const = 0. Moreover, the eigenstates |φλ〉 of
I (t) form a continuous complete set whose time-independent eigenvalues λ are solutions of
the equation [16, 19–21]

I (t)φλ(q, t) = λφλ(q, t), (12)

with

〈φλ|φλ′ 〉 = δ(λ − λ′). (13)
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It is easy to verify that the eigenstates of I (t) are of the form

φλ(q, t) =
(

1

2πh̄β(t)

)1/2

exp

[
imβ̇(t)

2h̄β
q2 +

iλ

h̄β(t)
q

]
. (14)

On the other hand, after a straightforward calculation of the matrix element of equation (5),
the phase functions are found to be

µλ(t) = − λ2

2mh̄

∫ t

0

1

β2(t ′)
dt ′. (15)

Therefore, the solutions of the Schrödinger equation (2) are given by

ψλ(q, t) =
(

1

2πh̄β(t)

)1/2

exp

[
iµλ(t) +

imβ̇(t)

2h̄β(t)
q2 +

iλ

h̄β(t)
q

]
. (16)

It is worth mentioning that other authors [20–29] have employed linear and quadratic invariants
to study quantum time-dependent systems described by the Hamiltonian (1). Furthermore, the
relationship between the linear invariant (11) and the well-known quadratic Ermakov–Lewis
invariant related to the Hamiltonian (1) and the corresponding eigenstates is discussed in [30].

In order to completely determine the solutions (16), let us return to the Mathieu–Hill
equation (10), whose general solution with ω2(t) = k cos2(�t) is [17, 18]

β(t) = AC

(
k

2�2
,− k

4�2
,�t

)
+ BS

(
k

2�2
,− k

4�2
,�t

)
, (17)

where A and B are constants to be determined by the initial condition and C and S are,
respectively, the even and odd Mathieu functions. It is worth noticing that when β(t)

vanishes the phase function µλ(t) diverges. In spite of this divergence, one can prove that
the wavefunctions (16) are always finite as follows. For all times, fλ(t) ≡ µλ(t)β(t) must be
finite so that, from equation (15), we find that

ḟ λβ − fλβ̇ = − λ2

2mh̄
. (18)

Hence, since the leftmost term in this equation must vanish when µλ(t) diverges, the
wavefunctions (16) may be rewritten in terms of fλ(t) (which is finite) instead of µλ(t).
For a more detailed discussion, the reader may refer to [31]. Furthermore, the evolution of a
general Schrödinger state can be written as

ψ(q, t) =
∫ ∞

−∞
g(λ)ψλ(q, t) dλ, (19)

where g(λ) is an arbitrary amplitude constant in time. In what follows we intend to construct
Gaussian wave packet solutions of equation (2). In doing so, we write g(λ) as

g(λ) =
√

a

(2π)1/4
e− a2

4 λ2
, (20)

where a is a positive real constant. Hence, substituting equations (16) and (20) into
equation (19) and performing the integral, we arrive at

ψ(q, t) =
(

2

π

)1/4 exp
(− imβ̇(t)

2h̄β(t)
q2

)
(h̄aβ(t))1/2

(
1 + 2if (t)

mh̄a2

)1/2 exp

[
− q2

h̄2a2β2(t)
(
1 + 2if (t)

mh̄a2

)
]

, (21)

where f (t) is given by

f (t) =
∫ t

0

1

β2(t ′)
dt ′. (22)
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Moreover, the time-dependent probability density associated with the initial Gaussian wave
packet (21) is Gaussian for all times

ρ(q, t) = |ψ(q, t)|2 = 1√
πσ(t)

e− q2

σ2(t) , (23)

with a time-dependent width

σ(t) =
√

h̄2a2β2(t)

2

(
1 +

4f 2(t)

m2h̄2a4

)
. (24)

Therefore, the centre of the packet remains at q = 0 while its width changes in time, consistent
with very general expectations for the oscillator case [32–34]. Furthermore, it is readily
verified that the wavefunction (21) is normalized and the time-dependent probability density
is conserved, i.e.,∫ ∞

−∞
|ψ(q, t)|2 dq = 1. (25)

Next, we evaluate the quantum coordinate and momentum fluctuations in the state ψ(q, t).
After some algebra, these fluctuations are found to be

�q =
√

〈q2〉 − 〈q〉2 = 1

2
√

U(t)
,

�p =
√

〈p2〉 − 〈p〉2 = h̄

√
U 2(t) + V 2(t)√

U(t)
,

(26)

where we have defined

U(t) = 1

h̄2a2β2(t)
(
1 + 4f 2(t)

m2h̄2a4

) , (27)

V (t) = mβ̇(t)

2h̄β(t)
+

2f (t)

mh̄3a4β2(t)
(
1 + 4f 2(t)

m2h̄2a4

) . (28)

Thus, the uncertainty product takes the form

�q�p = h̄

2

√
1 +

(
V

U

)2

= h̄

2

√√√√1 +

[
mβ̇(t)

2h̄β(t)
+

2f (t)

mh̄3a4β2(t)
(
1 + 4f 2(t)

m2h̄2a4

)
]2 (

1 +
4f 2(t)

m2h̄2a4

)2

h̄4a4β4(t). (29)

If we require that the minimum uncertainty is h̄/2 for a given time t, then we must have

β̇(t) = − 4f (t)

β(t)(m2h̄2a4 + 4f 2(t))
. (30)

For t = 0, this condition is obviously reduced to β̇(0) = 0 (note that by definition f (0) = 0).
On the other hand, the value of β(0) is connected to the initial width of the Gaussian packet (see
equations (21) and (23)). These are the initial conditions necessary to find the constants A and
B of equation (17). As expected, β(t) is an oscillating function as shown in figure 1. Moreover,
depending on the ratio k

�2 , the solution may oscillate periodically (a), quasiperiodically (b) or
inside an exponential growing envelope (c).
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Figure 1. The solution of the Mathieu–Hill equation β(t) for an initial Gaussian packet
with minimum initial uncertainty and unitary width may be periodic (a), quasiperiodic (b) or
grow exponentially (c). The inset of (c) shows that when the exponential factor e−α�t , with
α = 0.243 15, is scaled out, β(t) also oscillates. In all cases, we made β(0) = 1.

Finally, we consider the quantum correlations between coordinate and momentum which
are defined as [35]

C1,1 = 1

2

∫
ψ∗

[
q

(
−ih̄

∂

∂q

)
+

(
−ih̄

∂

∂q

)
q

]
ψ dq

−
(∫

ψ∗qψ dq

) [∫
ψ∗

(
−ih̄

∂

∂q

)
ψ dq

]
. (31)

After a minor algebra using equations (21) and (31), we obtain

C1,1 = h̄

2

V (t)

U(t)
= h̄

2

[
mβ̇(t)

2h̄β(t)
+

2f (t)

mh̄3a4β2(t)
(
1 + 4f 2(t)

m2h̄2a4

)
] (

1 +
4f 2(t)

m2h̄2a4

)
h̄2a2β2(t). (32)

From this expression, we can see that although there are no correlations at time t = 0,

the system develops correlation as time goes by. What is more, the appearance of correlation
comes with an increase in the uncertainty. In fact, the condition (30) implies that the correlation
is null when the uncertainty is minimum. Conversely, whenever the correlation is null the
uncertainty is minimum. In figure 2 we show the behaviours of the uncertainty and the
correlation. From this figure, we can see not only that the uncertainty is minimum when
the correlation is zero, but also that the maximum of the uncertainty corresponds to the
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Figure 2. Uncertainty (solid line, left axis) and correlation (broken line, right axis) as a function of
time. Once again we have set k = �2, a = 1, h̄ = 1 and m = 1, so that the minimum uncertainty
is 1/2 and occurs whenever the packet is uncorrelated.

minimum correlation. This striking relationship can be understood once the uncertainty can
be written as a function of the correlation

�q�p = h̄

2

√
1 +

(
2

h̄
C1,1

)2

. (33)

In summary, in this short article we have combined linear invariants and the dynamical
invariant method of Lewis and Riesenfeld [16] to derive the exact wavefunctions for a particle
trapped by oscillating fields. These wavefunctions were completely determined and written in
terms of Mathieu functions. In addition, we have constructed Gaussian wave packet solutions
whose probability density, quantum fluctuations, correlation and uncertainty were calculated.
Finally, we would like to point out that the results of this paper may be useful for the analysis of
ion-cooling processes and quantum statistical effects in atomic ensembles at low temperatures,
such as the Bose–Einstein condensation, since the quantum aspect of the Paul trap is essential
for the analysis of these systems [1, 36].
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